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Research Question: What are the current patterns of environmental inequalities in New
York City, and do trees and green spaces help address such environmental inequality?

Introduction and Literature Review

Environmental inequality in the U.S. has a long history closely linked to physical

community segregation and unequal distribution of pollution sources and environmental

amenities. In terms of physical segregation, the creation of redlining maps by the Home Owners’

Loan Corporation and Federal Housing Administration in the 1930s, for example, acted as a

powerful tool to skew resource distribution based on a community’s racial composition

(Hoffman, Shandas, and Pendleton 2020). Although redlining was outlawed in the 1970s, it

continues to have profound impacts on urban environments. Research has shown that redlined

neighborhoods are on average 5 degrees Fahrenheit warmer in the summer compared to

non-redlined neighborhoods (Hoffman et al. 2020). The historic lack of public investment

resulted in a lower number of trees and urban parks in redlined neighborhoods, exposing them to

greater risks of extreme heat. In terms of the unequal distribution of pollution and environmental

amenities, research has consistently found that low-income and minority households face

disproportionate environmental burdens (Boyce, Zwickl, and Ash 2016). For example, areas with

higher-than-average minority or low-income populations are exposed to significantly higher

levels of PM 2.5, reflecting the concentration of pollution sources like vehicle traffic and

polluting industries in these areas (Jbaily et al. 2022).

Given that environmental inequality is a widespread issue in U.S. cities, we want to

investigate potential solutions that may help mitigate environmental hazards like high urban



temperature and air pollution. After reviewing relevant literature, we discovered that urban

greeneries may be effective in reducing environmental inequality. Urban greenery has been

shown to be effective in improving public health. In Greensboro, NC, greater availability of tree

canopy coverage and open spaces are correlated with increased physical activities and improved

community health (Bruton & Floyd, 2014). Greater greenness in schoolyards in Chicago is

associated with lower stress levels, better concentration, increased motivation, and higher

predicted math performance among students (Kuo et al., 2018). Urban greenery can also bring

economic benefits. In New York City, researchers matched Green View Indexes (GVI) developed

using Google Street View with commercial property prices and found that properties with a

higher level of surrounding greenery have significantly higher rents and transaction prices (Yang

et al., 2021). Proximity to amenities like parks is also correlated to increased financial value

(Yang et al., 2021). These health and market trends indicate that access to nature improves the

quality of life by making a neighborhood more desirable to live, work, and visit, making urban

greeneries promising in reducing environmental inequality.

Knowing that environmental inequalities exist and that urban greenery may be able to

reduce such inequality, we decided to use New York City as a case study and investigate the two

in detail. Thus, in the first part of this research, we examine the patterns of urban inequalities

through the lens of environmental amenities, indicated by urban greenery distribution, and

environmental burdens, as reflected by land surface temperature and PM 2.5 concentration. In

the second part of this research, we explore the potential for cities to use urban greenery as a tool

to reduce environmental inequality by analyzing the impact urban greenery has on pollution and

temperature. Overall, our results suggest that environmental inequality persists in New York City



and that urban greenery is effective at reducing land surface temperature, but its effect on

pollution is still ambiguous.

Data / Methods

Pollution Data

We obtained pollution data for nitrogen dioxide (NO2), fine particulate matter (PM2.5),

nitric oxide (NO), and ozone (O3) from the NYC Open Data portal (New York City Department

of Health and Mental Hygiene 2022). The data, in raster format with a spatial resolution of 300

meters, shows the annual average predicted value for each of the pollution types based on a

model derived from the New York City Community Air Survey (New York City Department of

Health and Mental Hygiene n.d.). We derived the average pollution level for each census block

group using the Zonal Statistics tool in ArcGIS. Unfortunately, due to the low spatial resolution

of the pollution data, we were only able to obtain averages for 4,065 block groups out of the

6,287 land census block groups in the City. However, most missing data were for the same block

groups and these block groups tend to be in the more densely populated areas, meaning there

remain enough data points for all types of areas across the City.

Tree Density Data

We derived the tree density data based on the 2015 New York City Street Tree Census,

which is accessed via the NYC Open Data portal (NYC Department of Parks and Recreation

2020). The spreadsheet contained the longitude and latitude for 683,788 trees, dead and alive,

along the City’s streets. We removed the dead trees as they do not contribute to reducing surface

temperature or pollution, leaving us with 584,036 trees. The living trees were then mapped in



ArcGIS using the XY to Points function, and we utilized the Summarize Within feature to count

the number of trees within each block group. The tree density was derived by dividing the

number of trees in each block group by its size. This dataset did not include trees inside New

York City’s numerous parks, and therefore all parks are shown to have very low tree density.

Green View Index (GVI)

The Green View Index (GVI) is calculated from the Google Street View (GSV) images

using Semantic Image Segmentation. GVI is a representation of the residents’ eye-level

perception of urban greenery. Traditional methods of greenery measurement like tree density

data and remote sensing images have limitations compared to GVI. First, traditional methods

only measure greenery at a two-dimensional level while GVI includes three-dimensional features

like walls covered with vines, lawns, and bushes (Ki and Lee 2021). Secondly, by using the GSV

Images, GVI takes into account the urban greeneries’ accessibility. Traditional methods based on

an overhead view can differ from pedestrians’ actual perceived greenness and accessible public

greenery by including inaccessible areas like mountains and enclosed private gardens.

We used the road network and boundary shapefile of the City provided by NYC Open

Data as the input to determine which points to sample GVI from. Using the Python libraries

Fiona and Shapely, we created 140,000 points along the street network with a sampling distance

of 200 meters. To make the input points more accurately reflect ordinary residents’ perceived

greenness, and to meet our constraints in computational power and budget, we filtered out the

points that are less accessible: points on highways or in tunnels were removed, for example.

In order to fetch and download GSV images through the GSV API, we need to specify

the resolution, location (in latitude and longitude), field of view, heading, and pitch for each of



our sampled points. Overall, we chose to obtain six static street view images to create a

panorama for future calculations for each sampled point. Each image is at a resolution of 400 by

400 pixels, a field of view of 60 degrees, headings ranging from 0 to 360 with an interval of 60

degrees, and a pitch of 0 to represent eye-level perception. We also took into account the

seasonal difference in perceived greenness, so we only collected images from May to September.

Xiaojiang Li has developed a batch processing method using python, and using the parameters

mentioned above as the input, we retrieved 496,158 images from 82,693 sampling points (Li et

al. 2015). Due to GSV availability, the number of points we were able to retrieve images from is

lower than the number of points we planned to sample.

Figure 1: Sample GSV images fetched. The numbers on the image stand for the heading of the
image. The six images combined provide a panorama of a given position.

After collecting the GSV images, we calculated the GVI from the percentage of

vegetation within a given image. We used PyTorch and the MIT ADE20K scene parsing dataset



to recognize vegetation pixels within the GSV images. The Semantic Segmentation Algorithm

categorizes every pixel in the scene into 150 types of objects (Zhou et al. 2016, 2017). We

summed up the number of pixels recognized as “tree”, “grass”, and “palm” and divided them by

1600 to get the percentage of vegetation, which is the GVI for the given point.

Figure 2.1: Predicted vegetation result created from the MIT ADE20K scene parsing dataset.

Figure 2.2: Pixels categorized as “trees”. Notice that the model successfully distinguished the
green street light from the street trees.



The 82,693 calculated GVI points were imported into ArcGIS. Using the Summarize

Within function, we calculated the average GVI for the given block group using an average of all

the GVI points within the block group.

Figure 3: Visualization of Average Land Surface Temperature and Tree Density Data in New
York City by Block Groups

Land Surface Temperature

We obtained land surface temperature data via Google Earth Engine. First, we filtered

Landsat 8 Collection 2 Level 2 remote sensing infrared data imagery between June and August

for each year from 2015 to 2021. We excluded the 2020 data due to visible data errors in the

satellite image. We then applied scaling factors to the Band 10 infrared data to obtain the

land-surface temperature in Kelvin, then converted the numbers to Celsius. The raster image of

the average summer land surface temperature at a spatial resolution of 30 meters was exported to



ArcGIS, in which we used the Zonal Statistic tool and calculated the mean temperature for all

6,287 block groups.

Demographics Data

Demographics data was obtained from the 2019 American Community Survey 5-year

Estimates using Social Explorer. We downloaded race, education, employment, household

income, housing value, and rent burden status for every block group in the City.

Data Processing and Regression Analysis Methods

All data processed and generated using ArcGIS (pollution, tree density, GVI, and land

surface temperature) were joined together in one table using the FIPS code associated with each

block group. The table was exported as an Excel file, which was later combined with the

demographics data by FIPS code into one Pandas DataFrame via Python.

We first attempted to conduct regression analysis using linear regression, but spatial

autocorrelation issues in the dataset produced confusing and often contradictory results. For

example, the OLS Regression model from Table 1 shows that land surface temperature is

positively correlated with median household income while negatively correlated with median

housing value. We expected the two independent variables to have the same sign since

households with a higher income often choose to spend more on housing. Realizing that we need

to correct for spatial autocorrelation, we decided to conduct our regression analysis using spatial

error and spatial lag models via GeoDa. The decision of whether to use a spatial error or a spatial

lag model is based on the results of the Robust Lagrange Multiplier test on the OLS regression



model for both the spatial error and spatial lag. We chose either the spatial error or spatial lag

model depending on which test has the smallest p-value for the given model specification.

Variable Coefficient Standard Error p-value

Mean Green View Index -0.0584 0.004 0.000

% White Population -0.0057 0.001 0.000

% Bachelor or Higher Degree -0.0183 0.002 0.000

Unemployment Rate 0.0005 0.005 0.922

Median Household Income 0.1938 0.076 0.011

Median Housing Value -0.1779 0.049 0.000

% Residents with Severe Rent Burden 0.0038 0.001 0.011

Population Density -12.3417 1.603 0.000

Constant 40.3929 0.982 0.000

R2 = 0.186
Table 1: OLS Regression Model, using the surface temperature as the dependent variable

Results



Table 2: Results of the spatial error regression exploring the distribution of land surface
temperature1 2

Most socio-economic indicators correlate with temperature to show that neighborhoods

with more disadvantaged populations tend to have hotter summers. Both the percentage of white

population and those with a Bachelor’s or higher degrees have significant, negative correlations

with temperature, showing that racial minorities and non-college graduates tend to live in places

with higher temperatures. Similarly, neighborhoods with high average housing values also have

lower temperatures. This relationship can possibly be explained by people’s residential choices:

places that have lower temperatures tend to be more inhabitable and have higher market values.

Interestingly, population density also has a significant negative correlation with summer

temperature. This is likely because we utilized residential density for the regression, which

decreased the measured density in city-center neighborhoods that only have high activity levels

during the day.

2 * denotes the variable is significant at the 5% significance level.

1 Pct_White is the % of white population, Pct_Bachel is the % of residents with a Bachelor’s
degree or higher, Pct_Unempl denotes the % unemployment, Pct_Rent_5 denotes % of renters
who are severely rent burdened, Ln_Income is the median household income, Ln_Housing is the
median housing value, population_1 is a control variable for population density in the census
block group.



Table 3: Results of the spatial error regression exploring the distribution of urban greenery
(measured by tree density)

Table 4: Results of the spatial error regression exploring the distribution of urban greenery
(measured by GVI)

The regressions between social-demographic indicators and urban greenery

measurements yield intriguing results. The percentage of white population, median household

income, housing value, and residential density are all significant, but only the former two

indicators yield consistent results between tree density and GVI. A higher percentage of white

population and higher income both lead to more urban greenery. This relationship confirms the

impact of historic redlining practices that denied investment to minority neighborhoods and

resulted in the lack of public amenities in these areas.

The correlation between residential density and urban greenery measurements is an

interesting one, as places with higher densities tend to have more street trees but lower GVI

values. Comparing GIS maps for the individual indicators, we conclude that this correlation

occurs because low-density neighborhoods tend to have more trees, shrubs, and lawns, but only a

limited portion of those are street trees. In contrast, neighborhoods such as Upper East Side,

Manhattan, and Park Slope, Brooklyn have more designated street trees but not much greenery

otherwise because buildings tend to be directly adjacent to streets.



Similarly, the correlation between housing value and urban greenery measures also

depends on whether a neighborhood has more street trees or greenery away from the roadways.

We reason that because housing values tend to be the highest for city-center neighborhoods with

more street trees than suburbs, high housing value is correlated with higher street tree density. In

contrast, suburban neighborhoods have overall lower housing values but more lawn space and

natural greenery that can be effectively captured by the GVI.

Table 5: Results of the spatial error regression exploring the distribution of pollution (measured
by PM2.5 concentration)

The regression of social demographics on pollution gives very different results for each

of the independent variables. First, the impact of percentage of white population follows an

expected relationship, as increases in the proportion of white population leads to a significant

decrease in pollution. This correlation further demonstrates the effect of systemic racism on

urbanization patterns, as minority groups are more likely to live close to pollution sources like

industries and power plants.

The regression of median household income on pollution shows a significantly positive

correlation, which contradicts the regression for housing value. The special geography of New

York City does mean that many neighborhoods in the lower part of Manhattan have both the



highest traffic density and concentration of expensive apartments. The results from these wealthy

neighborhoods with poor air quality may have skewed the correlation. We also recognize that

there could be variables not included in our model that impact pollution levels.

Density also has a significant, negative correlation with pollution, which is similar to the

regression on temperature. We believe that the bias of residential density data toward areas

outside the city center is the main factor that led to the negative correlation.

Table 6: Results of the spatial error regression exploring the correlation between pollution (as
measured by PM2.5 concentration) and urban greenery (as measured by tree density)

Table 7: Results of the spatial error regression exploring the correlation between pollution (as
measured by PM2.5 concentration) and urban greenery (as measured by GVI)



The results of the regressions examining the effect of trees and urban greeneries on

PM2.5 are contradictory to intuition. After controlling for demographic characteristics, tree

density is negatively correlated with PM2.5 concentration while GVI is positively but not

significantly correlated with PM2.5 concentration. This difference in signs between the two

measures of urban greenery is not entirely unreasonable. Research in England has found that the

aerodynamic dispersive effect of trees reduces PM2.5 concentration at greater levels than the

deposition effect from trees and grass (Jeanjean, Monks, and Leigh 2016). Given that tree density

measures solely street trees whereas GVI, due to the calculations used to derive it, tend to

measure more types of urban greenery, it is possible that our tree density measure captured more

of the dispersive effect and our GVI measure captured more of the deposition effect and

therefore producing contradicting results in the regression. However, we do not know precisely

why the sign and significance differ.

In this regression, some previously significant controls become statistically insignificant.

Race, for example, is no longer statistically correlated with PM2.5 levels, contradicting earlier

findings. Additionally, population density remains negatively correlated with PM2.5

concentration, which is contradictory to the fact that PM2.5 concentration is higher in the City’s

dense downtown and midtown areas. There may be other variables that we failed to account for

that are affecting the results, or urban greenery simply does not have a significant effect on

reducing PM2.5 pollution in New York City. Unfortunately, our research cannot provide a

definitive conclusion.



Table 8: Results of the spatial error regression exploring the correlation between land surface
temperature and urban greenery (as measured by tree density)

Table 9: Results of the spatial error regression exploring the correlation between land surface
temperature and urban greenery (as measured by GVI)

The temperature regression with tree density is done using the spatial error model and

generates interesting results. The most surprising result is that tree density is positively and

significantly correlated with temperature in this model. This means that controlling for all other

values, an increase in tree density will lead to an increase in temperature, the exact opposite of

our hypothesis. The other surprising result is that population density is negatively correlated with

temperature according to our regression. The percentage of white population, residents with at

least a Bachelor’s degree, and median housing value are negatively and significantly correlated

with temperature, fitting the reasonable assumption that those financially better off are more



likely to live in more comfortable neighborhoods. Income, unemployment, and rent-burdened

status are insignificant in this regression.

The temperature regression with GVI is similarly conducted using the spatial error

model. In this model, GVI is significantly and negatively correlated with temperature. Percent

white population, percent having Bachelor’s or higher, and median housing value remain

negatively and significantly correlated with temperature, and income, unemployment, and

rent-burdened status remain insignificant. Population density continues to show negative

correlation with temperature.

Comparing the two results, it is evident that GVI serves as a better indicator of urban

greenery. The street tree density measure failed to account for trees in the City’s numerous parks

which are areas of low land surface temperature. Additionally, our tree density measure does not

account for the size of trees, which has been proven to reduce urban land surface temperature

(Wang and Akbari 2016). The GVI does better in accounting for the size of trees as it counts the

number of vegetation pixels in a given image, and we sampled points inside parks to ensure full

coverage. The quality of the measures is reflected in the regression results: tree density is

positively correlated with temperature while GVI is negatively correlated. Using the GVI

measure, we therefore conclude that trees and urban greenery have a significant and negative

effect on urban land surface temperature. The negative correlation between population density

and temperature, however, is difficult to explain in theory and in practice, and would require

further research to discern the precise effect of density alone on urban temperature.



Conclusion and Limitation

Based on our research and analysis, we conclude that environmental inequalities continue

to exist across race, income, and education lines, while urban greeneries are effective at reducing

urban temperature. We based the first part of our conclusion on the evidence that the patterns of

surface temperature correlate significantly with neighborhood racial composition, median

income, and percentage of residents with a Bachelor’s or higher degree. We also found PM 2.5

levels to be consistently higher in neighborhoods with a larger non-white population. On the

other hand, minority and low-income neighborhoods also have consistently lower levels of urban

greenery.  The second part of our conclusion is informed by the clear negative correlation

between mean GVI and surface temperature. Although we were unable to arrive at a definitive

conclusion on the effect of urban greenery on pollution, the significant relationship between

urban greenery and surface temperature suggests that trees can be considered a tool to combat

existing environmental inequality at least in New York City.

However, there are some limitations to our research. First, while using spatial-weighted

regression improved our regression results and significance, the regression methods we used

could be perfected. We decided between using either the spatial error or the spatial lag model as

GeoDa does not allow running a model that accounts for both spatial lag and error. However, it is

possible for the error terms as well as the dependent variables in the regressions to be correlated

with errors and the independent variables from nearby areas, therefore requiring the regression

model to account for both spatial error and lag. Without accounting for both, there may be bias in

our estimates.

Second, there may be unknown or unobserved variables that influenced the estimates of

the regression. While we controlled for demographic differences, a number of variables could



have potentially influenced the measures used in the data. The angle of the sun when temperature

images were taken could have influenced the land surface temperature as skyscrapers cast long

shadows in the City. The construction of highways nearby, the age of the building as well as the

inequality within a census block group could all influence the regression results, but we were

unable to find satisfactory measures to be able to control for these variables. These omitted and

unobserved variables may have caused bias in our regression estimates.

Additionally, the accuracy of data may reduce the accuracy of our results as well. The

tree density data did not account for the size of the tree while the GVI score failed to account for

the effects of scale –– a tree nearby occupies a greater number of pixels than a tree further away,

but both may generate the same effect on pollution and temperature. Additionally, the machine

learning model we used to extract urban greenery may have identified other objects of similar

color and shape as greenery, but it was impossible to verify the tens of thousands of images we

collected effectively. These inaccuracies in the measures of urban greenery may have caused

imprecise estimates of their effect.
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